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We consider a model of coupled free and porous media flow governed by Stokes and Darcy
equations with the Beavers–Joseph–Saffman interface condition. This model is discretized
using divergence-conforming finite elements for the velocities in the whole domain. Dis-
continuous Galerkin techniques and mixed methods are used in the Stokes and Darcy sub-
domains, respectively. This discretization is strongly conservative in Hdiv(X) and we show
convergence. Numerical results validate our findings and indicate optimal convergence
orders.
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1. Introduction

The coupling of Stokes and Darcy equations arises from the modeling of groundwater contamination through streams and
filtration problems [25,19]. In this work, a new numerical method is proposed, that employs divergence-conforming velocity
spaces, i.e. spaces included in Hdiv(X). The Darcy flow is discretized by a mixed finite element method and the Stokes flow by
a mixed (velocity–pressure) discontinuous Galerkin (DG) method. The two types of flow are coupled by appropriate interface
conditions, namely mass conservation, balance of forces across the interface and the Beavers–Joseph–Saffman law
[6,30,20–22].

One advantage of our approach is that mass conservation in the sense of Hdiv(X) is achieved. In particular, if there are no
sources or sinks, the divergence of the velocity is an L2(X) function and it is zero in that space (see [12]). This implies that the
divergence of the velocity is pointwise equal to zero inside the mesh cells. Therefore, we refer to this method as strongly con-
servative. It differs from a weakly conservative method, where mass conservation is only guaranteed when testing with func-
tions in the discrete pressure space; the result is usually a scheme which is locally (cellwise) conservative, but not pointwise.

Another advantage is that the bilinear form only involves one term on the interface. Indeed only the tangential compo-
nent of the velocity from the Beavers–Joseph–Saffman law appears in the scheme. Finally this paper proposes and analyzes a
. All rights reserved.
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general framework as the scheme is valid for various DG methods, such as the local discontinuous Galerkin and the interior
penalty methods.

Various numerical methods, such as finite element methods, mixed methods, discontinuous Galerkin methods and com-
binations of these methods, have been studied in the literature. For instance, finite element methods were studied in [14]
and finite element methods coupled with mixed methods have been analyzed in [24]. Primal DG methods using broken
Sobolev spaces are analyzed in [27], and they are coupled with mixed methods in [29]. All of these methods exhibit some
mass loss depending on the accuracy of the discretization, which is the main reason to propose our new scheme. A conform-
ing mixed method is analyzed in [15]. Stabilized methods are considered in [10,11,1].

The plan of the paper is as follows. Section 2 defines the model problem and a corresponding weak formulation. The gen-
eral scheme is described in Section 3. Its analysis is presented in Section 4. Finally, Section 5 shows numerical examples and
conclusions follow.
2. Model problem and weak formulation

Let X be a bounded polygonal domain in Rd, d = 2, 3. We assume that X is divided into two regions XS and XD, each being
a union of polygonal subdomains. Denote by CSD the polygonal line that is the interface between XS and XD. The external
boundaries are defined by
CS ¼ @X \ @XS; CD ¼ @X \ @XD:
In the region XS the fluid velocity uS and fluid pressure pS satisfy the Stokes equations:
�r � ð2mDðuSÞÞ þ rpS ¼ fS; in XS; ð1aÞ
ru�S ¼ 0; in XS; ð1bÞ
uS ¼ 0; on CS: ð1cÞ
The deformation tensor is DðuSÞ ¼ 1
2 ðruS þ ðruSÞTÞ. The coefficient m > 0 is the dimensionless fluid viscosity and the function

fS is a body force.
In the region XD the fluid velocity uD and fluid pressure pD satisfy the Darcy equations:
r � uD ¼ fD; in XD; ð2aÞ
uD þ KrpD ¼ 0; in XD; ð2bÞ
uD � n ¼ 0; on CD: ð2cÞ
Here, fD models sinks and sources in the porous medium. The coefficient K > 0 is the dimensionless permeability of the por-
ous medium.

The system of equations is completed by the Beavers–Joseph–Saffman transmissibility conditions at the interface. Let n
and s denote unit normal and tangential vectors to CSD, respectively. We assume that n points outward of XS. Introducing the
phenomenological friction coefficient c > 0, these conditions read:
uS � n ¼ uD � n; ð3aÞ
pS � 2mDðuSÞn � n ¼ pD; ð3bÞ
cK�1=2uS � s� 2mDðuSÞn � s ¼ 0: ð3cÞ
We remark that for three-dimensional domains, Eq. (3b) is satisfied for all tangential vectors to the interface. In order to ob-
tain weak solutions to the set of Eqs. (1c), (2a)–(2c), (3a)–(3c) we introduce the spaces
HdivðXÞ ¼ v 2 L2ðXÞjr � v 2 L2ðXÞ
n o

;

Hdiv
0 ðX ¼ v 2 HdivðXÞjv � n ¼ 0 on @X

n o
:

In the subdomain XS, we have to require additionally, that functions are weakly differentiable. Furthermore, if we use the
space Hdiv

0 ðXÞ, pressure functions will be determined only up to a constant. Thus, the function spaces for our weak formula-
tion will be
Q ¼ q 2 L2ðXÞj
Z

X
qdx ¼ 0

� �
;

V ¼ v 2 Hdiv
0 ðXÞjvjXS

2 H1ðXsÞ
n o

:

We also use the standard notation HsðOÞ for the Sobolev space of order s on a bounded domain O. We use the scalar product
notation and norm on X, boundaries, faces, and subsets of those, namely



Table 1
Velocity

Vh

BDM
RTk

BDFM
ABFk
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ð/;wÞX ¼
Z

X
/� wdx; h/;wiC ¼

Z
C

/� wds;

k/kX ¼
Z

X
j/j2dx

� �1=2

; k/kC ¼
Z

C
j/j2ds

� �1=2

:

The pointwise multiplication operator / � w refers to the product /w, the scalar product /�w and the double contraction /:w
for scalar, vector and tensor arguments, respectively. The modulus j/j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
/� /
p

is defined accordingly.
On V and Q, we introduce the bilinear forms
aDðu;vÞ ¼ ðK�1u; vÞXD
; 8u;v 2 V ;

aSðu;vÞ ¼ 2mðDðuÞ;DðvÞÞXS
; 8u;v 2 V ;

aIðu;vÞ ¼ cK�1=2huS � s;vS � siCSD
; 8u;v 2 V ;

aðu; vÞ ¼ aDðu; vÞ þ aIðu;vÞ þ aSðu;vÞ; 8u;v 2 V ;

bðv; qÞ ¼ �ðr � v; qÞX; 8v 2 V ; 8q 2 Q :

ð4Þ
Throughout the paper, we use the notation vS ¼ v jXS
. Thus, uS�s and vS�s refer to the tangential traces of u and v taken from

the side of XS at the interface CSD. The weak formulation of the problem (1c), (2a)–(2c), (3a)–(3c) reads: find (u,p) 2 V � Q
such that
aðu; vÞ þ bðv; pÞ ¼ ðfS; vÞXS
; 8v 2 V ;

bðu; qÞ ¼ ðfD; qÞXD
; 8q 2 Q :

ð5Þ
3. Discretization

Let Th be a conforming triangulation of X such that the interface CSD is the union of element edges. For any element
T 2 Th, we denote by hT its diameter and we denote by h the maximum diameter over all mesh elements. Denote by CS

h

the set of edges that are interior to XS. Denote by TS
h the set of mesh elements that belong to XS.

As above, we use the scalar product and norm notation on Th, boundaries, faces, and subsets of those, namely
ðu;vÞTh
¼
X
T2Th

Z
T

u � v dx; hu;viCS
h
¼
X
F2CS

h

Z
F

u � vds;

kukTh
¼

X
T2Th

Z
T

u2dx

 !1=2

; kukCS
h
¼

X
F2CS

h

Z
F

u2ds

0
@

1
A

1=2

:

For the discrete spaces, we use pairs of a divergence-conforming velocity space Vh � Hdiv
0 ðXÞ and the matching pressure

space Qh � Q, that is of order k (see Table 1 for examples of admissible pairs of finite element spaces). The Stokes operator
is discretized by a DG method. In order to do so, we introduce further notation. The jump of traces of a discontinuous func-
tion v across interior faces of the mesh is denoted by svt. The following DG norm is used:
kvk1;h ¼ krvk2
TS

h
þ r

h
ksvtk2

CS
h
þ 2r

h
kvk2

CS

� �1=2

; ð6Þ
where the parameter r P 0 is the usual penalty parameter of order k2. Note that the notation above applies only to quasi-
uniform meshes of isotropic cells. On non-uniform meshes, this quantity has to be localized, and on anisotropic cells, the cell
size orthogonal to the face should be used and the quotient averaged from both sides, see e.g. [18,23]. For Navier–Stokes
equations, the BDM pair was suggested in [12], the Raviart–Thomas pair in [13] (see also [31]).

3.1. Abstract assumptions

In what follows, we present an analysis that is valid for various DG methods and finite element spaces. Therefore, we will
list conditions on the discretization scheme as a list of assumptions and discuss examples in the following subsection.
spaces and matching pressure spaces.

Triangles/tetrahedra Quadrilaterals/hexahedra

Qh Qh

k+1 Pk Pk

Pk Qk

k+1 Pk Pk

Qk
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Assumption 1.
r � Vh � Qh: ð7Þ

Our analysis is based on the existence of a projection operator Ph that satisfies several properties.
Assumption 2. There exists a projection operator Ph : Hdiv
0 ðXÞ ! Vh, satisfying the following properties:

1. Let Ph:Q ? Qh be the L2-projection. The commutation property
ðq;r �PhvÞX ¼ ðPhq;r � vÞX ð8Þ
holds for all v 2 V and q 2 Q.
2. The value of Phv on a grid cell K depends on the values of v on K and @K only.
3. Ph is stable in L2(X), Hdiv(X) and L2(CSD): there exists a constant Cs independent of hK and h, such that
kPhvkK 6 CskvkK ; ð9aÞ
kr �PhvkK 6 Cskr � vkK ; ð9bÞ
kðPhwÞSkCSD

6 CskwSkCSD
; ð9cÞ
for any v 2 Hdiv(K) and for any w 2 (H1(XS))d.
4. Ph is stable in the DG norm: there exists a constant Cs independent of h such that
kPhvk1;h 6 Cskvk1;h: ð10Þ
5. For any u 2 Hs+1(X) and s P 1, there is a constant Ca independent of h such that
ku�PhukXD
6 Cahminðk;sÞþ1 kukHsþ1ðXDÞ; ð11aÞ

kðuS � ðPhuÞSÞ � skCSD
6 Cahminðk;sÞþ1=2kukHsþ1ðXSÞ; ð11bÞ

ku�Phuk1;h 6 Cahminðk;sÞ kukHsþ1ðXSÞ: ð11cÞ
Now, consider the vector-valued elliptic problem
� 2mr � Dð~uÞ ¼ f ; in XS;

~u ¼ 0; on CS;

2mDð~uÞn ¼ 0; on CSD;

ð12Þ
which corresponds to the Stokes problem (1c) without the incompressibility constraint. Without restricting to a particular
method, we abstractly introduce its DG discretization
aS;hð~uh; vÞ ¼ ðf ; vÞ; 8 v 2 Vh: ð13Þ
The bilinear form aS,h (�,�) may correspond to any DG method fulfilling the following assumption.

Assumption 3. With ~u the solution to the vector-valued Eq. (12) we make the following assumptions on the discretizing DG
bilinear form aS,h (�,�):

� Boundedness: there is a constant ca independent of m and the mesh size h such that for any u and v in Vh
jaS;hðu; vÞj 6 mcakuk1;hkvk1;h: ð14aÞ
� Stability: there is a positive constant a independent of m and the mesh size h such that for any u 2 Vh
aS;hðu;uÞP makuk2
1;h: ð14bÞ
� Consistency: for the solution ~u above and any v 2 Vh there holds
aS;hð~u;vÞ ¼ ðf ;vÞXS
: ð14cÞ
� Approximation property: if the solution ~u above belongs to Hs+1(XS)2, for some exponent s P 1, then there is a constant C
independent of m and the mesh size h such that for any v 2 Vh
jaS;hð~u�Ph~u;vÞj 6 Cmhminfs;kgk~ukHsþ1ðXSÞkvk1;h: ð14dÞ
We combine the DG bilinear form for Stokes domain with the interface and Darcy forms to obtain the discrete bilinear form
ahðu;vÞ ¼ aDðu;vÞ þ aIðu;vÞ þ aS;hðu; vÞ: ð15Þ
With this form, we associate the energy norm



G. Kanschat, B. Rivière / Journal of Computational Physics 229 (2010) 5933–5943 5937
jjjujjj ¼ mkuk2
1;h þ kK

�1=2uk2
XD
þ kc1=2K�1=4uk2

CSD

� �1=2
: ð16Þ
Formally, the scheme is: find (uh,ph) 2 Vh � Qh such that
ahðuh; vÞ þ bðv; phÞ ¼ ðfS;vÞXS
8v 2 Vh;

bðuh; qÞ ¼ ðfD; qÞXD
8q 2 Q h:

ð17Þ
By choosing the spaces Vh and Qh such that Assumption 1 holds, the second line of this equation implies, that if fD = 0, then
also r � uh � 0 inside all grid cells, and thus r � uh = 0 strongly.

3.2. Concrete methods

The projection operator in Assumption 2 is commonly known as the Fortin projection (see e.g. [9,16]) for divergence-con-
forming finite element spaces. Examples for such spaces are RT [26], BDM [8], BDFM [7] and the more recent ABF [3] spaces.
They all consist of special polynomial spaces on each mesh cell, together with node functionals and transformations ensuring
global Hdiv-conformity of the space. The matching pressure spaces are discontinuous piecewise polynomial functions (see
Table 1). While the estimates in L2 (9a) and Hdiv (9b) are classical, the broken H1-estimate (10) can be found in [12,13,17,18].

Discontinuous Galerkin schemes satisfying assumptions are the primal DG methods and the LDG methods [4]. For exam-
ple, we define below the bilinear form aS,h used in the interior penalty method [2,28] and its variations, which is the method
used in the numerical experiments in Section 5. Further notation is introduced. The pointwise average of a discontinuous
function across interfaces is denoted by {{�}} and for each face F 2 CS

h, a unit normal vector is chosen and denoted formally
by nh below
aS;hðu;vÞ ¼ 2mðDðuÞ;DðvÞÞTS
h
� 2mhffDðuÞggnh; svtiCS

h
� 2mhffDðvÞggnh; sutCS

h
þ rk2

h
hsut; svtiCS

h
þ 2rk2

h
hu;viCS
The form aS,h satisfies Assumption 3.
In the next section, we analyze the scheme (17).

4. Analysis of the method

We first establish well-posedness of the scheme by proving an inf–sup condition. Then, we derive error estimates in the
energy norm.

Lemma 1. There is a constant b > 0 independent of h such that
inf
qh2Qh

sup
vh2Vh

bðvh; qhÞ
jjjvhjjjkqhkX

P b�1: ð18Þ
Proof. Fixing qh 2 Qh and it is sufficient to show that there is vh 2 Vh such that
bðvh; qhÞ ¼ kqhXk
2 and jjjvhjjj 6 bkqhkX: ð19Þ
By the continuous inf–sup condition on the spaces ðH1ðXÞ; L2
0ðXÞÞ, there is a function v 2 (H1(X))d such that
r � v ¼ �qh; in X; ð20Þ
v ¼ 0; on @X; ð21Þ
and there is a positive constant C0 such that
krvkX 6 C0kqhkX: ð22Þ
Then, we have
bðv ; qhÞ ¼ �
Z

X
qhr � v ¼ kqhk

2
X:
Let Phv be the interpolant in Assumption 2. Since Phqh = qh, we obtain from (8):
bðPhv; qhÞ ¼ bðv; qhÞ ¼ kqhk
2
X;
and due to Poincaré’s inequality, as well as (9c) and (22), there are positive constants C1, C2, C3 such that
kPhvkXD
6 C1kqhkX;

kPhvkCSD
6 C2kqhkX;

kPhvk1;h 6 C3kqhkX:
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Thus, we conclude that (19) holds with vh = Phv and
b ¼ C0 mC2
3 þ K�1C2

1 þ cK�1=2C2
2

� �1=2
: � ð23Þ
The inf–sup condition (18) and the coercivity assumption (14b) imply by standard arguments (see e.g. [9]) the following
lemma.
Lemma 2. There exists a unique solution (uh,ph) 2 Vh � Qh satisfying (17).
Lemma 3. Let (u,p) and (uh,ph) be the solutions to (5) and (17), respectively. Assume that u 2 Hs+1(X) and p 2 Hs+1(X) for some
s P 1. Then, there is a constant C independent of the mesh size, m and K, such that
jjjuh �Phujjj 6 C maxðK�1;K�1=2Þð1þ m1=2Þhmin k;skukHsþ1ðXÞ: ð24Þ
Proof. Define
g ¼ uh �Phu; n ¼ u�Phu; ð25Þ
f ¼ ph � Php; v ¼ p� Php: ð26Þ
The error equation is: for all v 2 Vh and q 2 Qh:
ahðg;vÞ þ bðv; fÞ ¼ ahðn; vÞ þ bðv ;vÞ; ð27Þ
bðg; qÞ ¼ bðn; qÞ: ð28Þ
Choose v = g and q = f and use coercivity (14b) of aS,h:
minð1;aÞjjjgjjj2 6 ahðn;gÞ þ bðg;vÞ � bðn; fÞ:
From (7), we have b(g,v) = 0 and from (8), we have b(n,f) = 0. From (14d), we have the bound:
aS;hðn;gÞ 6 Cmhminðs;kÞkukHsþ1ðXSÞkgk1;h 6
1
2

minð1;aÞmkgk2
1;h þ Cmh2 minðs;kÞkuk2

Hsþ1ðXSÞ
The remaining terms are bounded as:
aDðn;gÞ þ aIðn;gÞ 6
1
2

minð1;aÞðkK�1=2gk2
XD
þ cK�1=2kgS � sk

2
CSD
Þ þ Cðkn2

XD
þ knS � sk2

CSD
Þ:
We then conclude by combining the bounds above and by using the approximation properties (11a) and (11b). h
Theorem 1. Under the assumptions of Lemma 3 and p 2 Hs+1(X), we obtain for C independent of h, m, K:
jjjuh � ujjj 6 Chminðk;sÞ
; #ðm;KÞkukHsþ1ðXÞ;

kr � u�r � uhk 6 Chminðkþ1;sÞ
; kukHsþ1ðXÞ;

kp� phk 6 Chminðk;sÞ b#ðm;KÞkukHsþ1ðXÞ þ kpkHsþ1ðXÞ

� �
;

where b is the inf–sup constant from Lemma 1 and
#ðm;KÞ ¼ ð1þ m1=2Þð1þmaxðK�1;K�1=2ÞÞ:
Proof. The first bound is obtained by a triangle inequality and (11c) in Assumption 2. The second bound is a consequence of
(7) and approximation properties: for any v 2 Vh, we have r � v 2 Qh and therefore,
kr � u�r � uhk2 ¼ ðr � u�r � uh;r � u�r � vÞX 6 kr � u�r � uhkkr � u�r � vk:

Thus
kr � u�r � uhkL2ðXÞ 6 min
v2Vh

kr � u�r � vkL2ðXÞ:
Finally, the error estimate for the pressure is a consequence of the inf–sup condition in Lemma 1. h
5. Numerical results

The numerical results below are computed with the interior penalty method on meshes consisting of squares for simplic-
ity. In that case, the stability limit for r is computable and we take twice this value, namely r = (k + 1)(k + 2)/h, where h is
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the length of the cell perpendicular to the edge. We use the viscosity m = 1 and c = 0.1 in the Beavers–Joseph–Saffman con-
dition, following [6].

First, we choose a problem with a smooth solution to show that the convergence rates are optimal with respect to mesh
size. To this end, consider a geometry resembling flow through a porous filter as in Fig. 1. We choose no-slip (normal and
tangential velocities prescribed) boundary conditions with a quartic inflow and outflow profile on the left and right bound-
aries of the domain, such that ux and @yux vanish at the upper and lower boundaries. Thus, we are consistent with the slip
(only normal velocities fixed) boundary condition on the top and bottom and the solution exhibits only mild singularities in
the corners. Note that the slip boundary condition is also the well-posed condition on the normal velocity in the porous med-
ium. Since all flow has to go through the filter in the center, the flow speed there is asymptotically independent of K as K
tends to zero.

Results for the pair RT1=Q1-element and permeability K = 10�4 are reported in Table 2. Since the exact solution is un-
known, we present the L2-norm of intrinsic errors obtained by taking the difference d‘ between numerical solutions on con-
secutive grid levels ‘ � 1 and ‘. Here, level 1 consists of 3 � 3 squares and higher levels are obtained by refining the squares
of the previous levels into four congruent children.

The intrinsic convergence rates are obtained from these by the formula r‘ = log2(d‘�1/d‘). Note that in case of geometric
error reduction (constant convergence rates), the intrinsic error is equivalent to the standard error and only differs by a fac-
Fig. 1. Configuration for smooth solution. Free flow regions left and right separated by a porous medium. No-slip boundary conditions with quartic inflow
and outflow profile left and right, slip at top and bottom.

Table 2
Intrinsic mean quadratic errors and convergence rates for the smooth problem solved with the RT1=Q1-element pair (m = 1, K = 10�4).

level uS uD pS pD r � u

Error Rate Error Rate Error Rate Error Rate

2 1.97e�01 – 1.45e�03 – 5.80e+00 – 2.23e+00 – 5.92e�12
3 4.60e�02 2.10 8.29e�05 4.13 3.65e�01 3.99 1.30e�01 4.10 1.79e�12
4 1.30e�02 1.83 1.82e�05 2.19 8.22e�02 2.15 2.91e�02 2.16 8.11e�13
5 3.43e�03 1.92 4.52e�06 2.01 2.05e�02 2.00 7.25e�03 2.00 4.68e�13
6 8.90e�04 1.95 1.14e�06 1.98 5.19e�03 1.98 1.83e�03 1.98 2.17e�13
7 2.27e�04 1.97 2.88e�07 1.99 1.31e�03 1.99 4.62e�04 1.99 1.34e�13

Table 3
Intrinsic convergence rates for higher order elements (m = 1, K = 10�4).

Degree Level uS uD pS pD

RT2 3 1.61 3.13 1.92 2.99
4 2.82 3.26 2.29 3.04
5 2.97 3.12 2.38 3.03
6 3.00 3.04 2.42 3.01

RT3 3 3.73 4.36 3.60 4.36
4 3.80 3.91 3.24 4.00
5 3.85 4.13 3.10 3.99
6 3.88 4.33 3.04 4.00

RT4 3 4.05 5.50 3.03 5.32
4 4.03 5.07 3.00 4.98
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tor. The table shows, that in spite of the fact that the energy norm involves the derivatives of uS and the field uD itself, the
mean quadratic errors of both converge with the optimal order 2. The same is true for the pressure in both subdomains. Thus,
we conclude that the scheme is well balanced and convergence in the subdomains is not impeded by the coupling.

The boundary conditions in this particular example were chosen such that the solutions for velocity and pressure are
smooth. In Table 3, we show intrinsic convergence rates for higher order elements. The observed rates for the velocities
are k + 1 as predicted; the reduced orders for uS with RT4 are due to lack of regularity of the solution (see Fig. 2). The pressure
pD exhibits order k + 1, as predicted by the theory for the Raviart–Thomas element for the mixed Laplacian. The convergence
rate for the pressure pS confirms our analysis. We note that trivially the order of convergence of the global pressure corre-
sponds to our error estimates.

Next, we study the robustness of the errors with respect to the permeability K. Fig. 3 clearly shows robustness of the rel-
ative error of the Stokes solution with respect to permeability. The relative error of the Darcy solution decays linearly with
Fig. 2. Intrinsic velocity error distribution for RT4=Q4, exhibiting the weak corner singularities.
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Fig. 3. Relative errors of uD (left) and uS (right) depending on refinement level for different permeabilities K.

Fig. 4. Setup for flow in a river bed. The Stokes region is on top and the Darcy region on the bottom. Slip conditions left, right and bottom, no-slip at the top.
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permeability. This is caused by the fact that the norm of uD is nearly independent of K (all flow has to go through the filter),
but the error scales with K�1.

In a second test, we consider an idealized flow in a river bed as depicted in Fig. 4. The free-flow subdomain is on top, the
porous medium at the bottom. On the top boundary, we fix normal and tangential velocities (no-slip), on the others only the
tangential velocity. The quartic inflow and outflow profiles in the Stokes region are chosen such that no singularity is trig-
gered at the interface (u = @nu = 0). This example differs from the previous in that the flow speed in the porous medium de-
pends strongly on the permeability; for small permeabilities linearly. Since the flow is driven by the flow in the Stokes
subdomain, where errors are expected to be independent of permeability, we expect the absolute errors of the Darcy velocity
to reduce if K tends to zero. Nevertheless, since the solution there diminishes as well, this prediction might be wrong for the
relative error. Indeed, in our experiment the absolute error on fine meshes behaves like K1/2, such that the relative error
grows with K�1/2. This is confirmed by Fig. 5.

Finally, we confirm that the method is strongly conservative, even in the case of non-tangential flow across the interface.
To this end, consider the configuration in Fig. 6. The left half of the domain is the free-flow part with Stokes equations, a
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Fig. 5. Relative errors of uD (left) and uS (right) in the river bed example depending on refinement level for different permeabilities K.

Fig. 6. Configuration for mass conservation test. The thick boundary on the left half of the domain indicates no-slip, the dashed boundary on the right
prescribed pressure p = 0.

Fig. 7. Velocity field and pressure isolines for the mass conservation test with K = 10�4.



Table 4
Mass flux difference between inflow and outflow side of the domain.

Level K = 10�2 K = 10�4 K = 10�6

2 1.4e�08 8.5e�10 1.2e�09
3 2.5e�10 2.7e�10 5.1e�11
4 4.5e�10 1.2e�09 4.7e�09
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quadratic inflow profile and no-slip boundary conditions. The Darcy part on the right has slip conditions on the top and bot-
tom and pressure boundary condition p = 0 on the right. Accordingly, the normal flux u � n on the right boundary is a result of
the computation. The velocity and pressure solution for this problem are shown in Fig. 7. It is important to note that such
non-tangential flow across the interface was not experimentally considered in [6]. Tangential flow is sufficient (but not nec-
essary) for the Beavers–Joseph–Saffman law to hold. For non-tangential flows, in particular in filtration problems [25], the
law is still accepted even though there is no experimental evidence that confirms or denies the use of this law. A mathemat-
ical justification of the Beavers–Joseph–Saffman law for non-tangential flow can be obtained by applying homogenization
techniques found in [20,21] according to Mikelič but this will be very technical.

Since the strong, homogeneous, normal boundary conditions on top and bottom assure that no mass is lost there, we use
the difference of the integrals of the normal flux over the left and right boundaries, respectively, to demonstrate the conser-
vation property of our method. With an incoming flux integral of 4/3, the results displayed in Table 4 show clearly that the
mass flux error is close to the computational accuracy and thus confirms the strong conservation property of the method.

6. Conclusions

We presented a uniform finite element method for the coupling of Stokes and Darcy flow. By the use of divergence-con-
forming elements, exact mass conservation is guaranteed. We presented an error norm estimate which is optimal with re-
spect to the approximation spaces, but suggests an imbalance between the subdomains. The results of the numerical
experiments on the other hand indicate, that the scheme is indeed well balanced and convergence orders in L2 are the same
for the Stokes and the Darcy part. The proof of this convergence requires more involved analysis and will be postponed to a
future article.
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